
This article was published in the above mentioned Springer issue.
The material, including all portions thereof, is protected by copyright;
all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;
commercial use is not permitted.

Unauthorized reproduction, transfer and/or use
may be a violation of criminal as well as civil law.

ISSN 1420-2026, Volume 15, Number 1



How Certain Are Salmon Recovery Forecasts?
AWatershed-scale Sensitivity Analysis

A. H. Fullerton & D. Jensen & E. A. Steel & D. Miller &

P. McElhany

Received: 7 March 2008 /Accepted: 18 November 2008 /Published online: 9 December 2008
# Springer Science + Business Media B.V. 2008

Abstract Complex relationships between landscape and
aquatic habitat conditions and salmon (Oncorhynchus spp.)
populations make science-based management decisions
both difficult and essential. Due to a paucity of empirical
data, models characterizing these relationships are often
used to forecast future conditions. We evaluated uncertain-
ties in a suite of models that predict possible future habitat
conditions and fish responses in the Lewis River Basin,
Washington, USA. We evaluated sensitivities of predictions
to uncertainty in model parameters. Results were sensitive
to 60% of model parameters but substantially so (|partial
regression coefficients| >0.5) to <10%. We also estimated
accuracy of several predictions using field surveys. Obser-
vations mostly fell within predicted ranges for riparian
shade and fine-sediment deposition, but large woody debris
estimates matched only half the time. We provide sugges-
tions to modelers for improving model accountability, and
describe how managers can incorporate prediction uncer-
tainty into decision-making, thereby improving the odds of
successful salmon habitat recovery.
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1 Introduction

Wild Pacific salmonid (Oncorhynchus spp.) populations in
the Pacific Northwest USA are considerably less abundant
than they were in pre-colonial times [17, 25], and numerous
populations are listed as endangered or threatened under the
Endangered Species Act [22]. Because all salmon rely on
cool and clean water and adequate habitat, destruction of
habitat by human activities has been implicated as a partial
cause for this decline [19]. After years of scientific
research, policy debate, and dubious effectiveness of
implemented restoration actions, we are at the stage of
salmon recovery planning in which critical decisions on
habitat management and restoration must be made in order
to avoid accelerated extinction risk (e.g., [15]). Choosing
among competing conservation objectives and implemen-
tation strategies can be difficult given the uncertainty that
each course of action will provide the benefit intended, and
the cost-benefit tradeoffs among differing potential habitat
restoration sites and types of restoration actions (e.g.,
removing fish passage barriers, reducing sediment delivery
to streams by decommissioning roads or restoring riparian
vegetation). To date, existing management plans have failed
to prevent population declines in part because of the failure
to include a means of incorporating these inevitable
uncertainties into decisions [5].

Computer simulation models are a useful and necessary
tool for both predicting and comparing habitat and fish
responses to potential restoration or conservation actions.
However, models rely on parameters that are either
statistically fitted or theoretically derived and on input data
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for which there is limited certainty. The sensitivity of
modeled fish or habitat predictions to this imperfect
knowledge base is often not thoroughly evaluated. In many
cases, model accuracy (i.e., how well predictions match
empirical observations) is not assessed before model out-
puts are incorporated into management decisions. Informa-
tion about uncertainty associated with model predictions
can inform managers about tradeoffs in model performance
(i.e., how confident we are in predictions from each model)
that will be instrumental in guiding development of robust
watershed-level conservation plans and in refining future
generations of models.

Steel et al. [36] developed an analytical tool to help
managers evaluate potential effects of freshwater habitat
restoration activities within a watershed by modeling water-
shed processes, habitat conditions, and salmonid population
responses. The analytical tool is comprised of spatial datasets
produced in a geographic information system (GIS) and a
number of models (Fig. 1) that collectively predict responses
of watershed features (e.g., riparian conditions, sediment
delivery, hydrologic runoff), habitat conditions (e.g., bed
scour, substrate composition, habitat suitability), and salmo-
nid populations (e.g., spawner capacity, egg-to-fry survival,
accessibility) to a variety of hypothetical watershed manage-
ment strategies. For each management strategy, the analysis
predicts spatially-explicit ecological conditions and fish
responses. These predicted conditions can be compared to
existing or best-case conditions to inform decision-makers
about which options are both ecologically beneficial and
economically feasible. The analytical tool is currently
customized for Pacific salmonids in the Lewis River Basin,
southwest Washington State, but can be modified for use in
other watersheds or for other species.

For this tool to serve as a useful alternative to existing
approaches for salmon recovery planning, decision-makers
need to have a clear idea about how predictions relate to
reality. There are five types of uncertainty encountered in
modeling [33]: (1) uncertainty associated with choice of
model structure (e.g., linear, non-linear, decision tree), (2)
uncertainty in estimation of model parameters, (3) uncer-
tainty in measurement of input data (e.g., measurement
error), and (4) natural stochastic variation. All of these
contribute to the fifth type of uncertainty: (5) accuracy with
which model predictions represent reality. In this study, we
investigated two of these sources of uncertainty for the
analytical tool developed by Steel et al. [36]: (1) uncertainty
associated with model parameters, and (2) the accuracy of
predictions. Although we did not evaluate the effect of
uncertainty associated with input data (e.g., landscape and
instream conditions) used by models, nor of natural
stochastic variability, this approach gave us a better
understanding of how precise predictions are for the current
parameterization in the Lewis River Basin.

With respect to model parameter uncertainty, we
addressed three objectives. Our first objective was to
evaluate the cumulative effect of uncertainty in all model
parameters on predictions. To accomplish this, we simulta-
neously varied parameters by as much as 50% and
generated a distribution of predictions which we used to
interpret our confidence in predictions for a given level of
collective parameter variance. Our second objective was to
use sensitivity analysis to determine how uncertainty was
partitioned among model parameters. We were interested
in the relative influence each parameter had on variance in
modeled predictions. We were especially interested in
sensitivity of predictions by several models that used step
functions to estimate relationships that are not completely
understood because it is often assumed that predictions will
be sensitive to the choice of step-delineating values. Our
third objective was to investigate whether there was any
spatial pattern in prediction uncertainty. We asked whether
modeled predictions were more precise in some parts of the
watershed compared to others. Finally, to evaluate model
accuracy, we examined whether stream survey data fell
within the range of model predictions. We explore how
these analyses can (1) guide future model development
(e.g., identification of areas where additional empirical data
would increase prediction reliability) and (2) use results to
describe how knowledge about uncertainty in modeled
predictions can inform management decisions.

2 Methods

2.1 Basic Model Structure

We evaluated six independent geospatial models in the
Lewis River Basin (described fully in [34, 36]) that each
predicted unique outputs for each stream reach (Fig. 1).
Models included (1) riparian functions (three sub-models),
(2) sediment and water supply (three sub-models), (3)
instream habitat conditions, (4) spawning habitat suitability
(for Chinook (O. tschawytscha) and chum salmon (O. keta)
and steelhead trout (O. mykiss)), (5) egg-to-fry survival (for
three species; we evaluated only Chinook salmon), and (6)
spawner capacity (Chinook salmon).

The riparian functions model is a three-part decision-tree
model that predicts qualitative ratings for shade, pool-
forming conifer abundance, and large woody debris
recruitment provided by riparian vegetation within 60 m
of each bank. The sediment and water supply model
consists of three sub-models predicting the amount of
surface erosion and hydrologic runoff from adjacent hill-
slopes that is supplied to streams, sediment input contrib-
uted by roads in adjacent drainage areas, and sediment
derived from mass wasting. Surface erosion, hydrologic
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runoff, and road sediment models are adapted from the
Water Erosion Prediction Project (WEPP [4]), and mass-
wasting predictions are based on road density, land cover,
and slope stability and verified by field surveys. Note that
we did not evaluate parameters internal to the WEPP
model, but we did evaluate parameters that quantified to
what extent riparian conditions reduced the amount of
predicted sediment and runoff reaching streams. The

Instream Habitat Conditions model routes sediment and
water contributed to each stream reach from the surround-
ing landscape and from an inverse-distance weighted area
upstream to predict sediment transport and deposition rates.
Substrate composition and bed scour are predicted from
transport rates and local stream habitat survey data. The
habitat suitability model combines species-specific spawn-
ing requirements (channel gradient, bankfull width, hydro-
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Fig. 1 Structure of the six
ecological models evaluated
(shaded boxes; see [36] for
model descriptions), and number
of parameters in each model
(circles to the right). Codes in
black boxes correspond with
Table 1 to help identify param-
eters in each model. Data used
by models were either derived
independently from another
source (e.g., landscape charac-
teristics or other GIS data; tra-
pezoids connected with solid
lines) or were outputs predicted
by one of these models (e.g.,
riparian function score; ovals
connected with dotted lines). All
predictions (ovals) were mod-
eled for each individual stream
reach. For sensitivity analyses,
results were then summarized
over all reaches historically ac-
cessible to winter steelhead (the
most far-ranging species) for 13
predictions (ovals with bolded
text; note that we summarized
habitat suitability for three spe-
cies). These output metrics were
calculated as length-weighted
reach averages or as sums of
reach-specific values over all
fish-accessible reaches (the latter
are denoted by an asterisk).
†Does not include WEPP model
parameters (see text). Output
metrics for which we had field
data to validate are represented
by ovals outlined with a dotted
line
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logic regime) with anthropogenic effects (fine sediment in
spawning gravels, altered riparian conditions) to predict
spawning habitat suitability. The spawner capacity model
uses remotely sensed (i.e., obtained from satellite data or
areal photographs) riparian seral stage, bankfull width, and
channel gradient to predict capacity for Chinook salmon
spawners. Egg-to-fry survival for Chinook and coho
salmon and steelhead are predicted from empirical relation-
ships derived from meta-analyses of published relationships
between percent fine sediment in spawning gravels and
survival of eggs to fry [10].

We summarized predictions over all reaches accessible
to anadromous fish to provide watershed-wide output
metrics (depicted in Fig. 1). Several models yield multiple
predictions (e.g., the Riparian Functions model predicts
three individual responses plus a composite response), so
we chose representative metrics from each model for
evaluation. In certain cases, outputs from some models (e.g.,
riparian functions, sediment and water supply) were used as
inputs to other models. These input data could have instead
come from other sources such as independent external
models, or empirical data if it existed. Although outputs
from each model can be evaluated independently, in this
study we evaluated uncertainty associated with parameters
that both directly and indirectly (i.e., when model outputs
were used as inputs) influenced predictions. Parameters in
each model are listed in Table 1; due to the large number of
parameters (119 total), we report only ones to which model
outputs turned out to be sensitive.

2.2 Sensitivity Analysis

We used Monte Carlo simulations to evaluate how
uncertainty in estimates of model parameters influenced
predictions, both within and across models (objective #1).
We created five ranges of input distributions, where error
was assumed to be uniformly distributed around the
original parameter value with the width equal to 10%,
20%, 30%, 40% or 50% of the nominal value. We used
uniform distributions because we lacked data on the true
underlying distributions. For each of the input distributions,
we generated 500 samples to serve as input to the models.
Each sample consisted of a set of parameter values, each
drawn randomly and independently from its distribution.
Using these datasets, we ran 500 simulations (applying the
same set of parameters to all reaches in the watershed for a
given run) and generated distributions of output metrics.
We calculated the coefficient of variation of each output
metric for each input distribution to compare the impacts of
parameter uncertainty on model predictions.

To evaluate the relative effect of individual parameters
on predictions (objective #2), we employed a quantitative
sensitivity analysis using multiple linear regression [7, 27,

28]. We regressed each output metric generated from the
Monte Carlo runs on all parameters for each input
distribution (e.g., 10, 20, 30, 40, or 50% ranges). We used
standardized-regression coefficients (SRCs) to evaluate the
sensitivities of predictions to each parameter. SRCs were
computed as b×(sd_x/sd_y), where b is the unstandardized
regression coefficient, sd_x is the standard deviation of the
parameter input values and sd_y is the standard deviation of
the output. Standardization scaled the coefficients in units
of standard deviations away from the nominal value [20],
so that results were comparable across input distribution
ranges. Final regression equations omitted parameters with
a t-statistic less than 1 in absolute value (a p-value of about
0.3 for alpha=0.05). When input parameters are indepen-
dent, as ours were, the square of each SRC is equal to the
partial R2, attributable to that factor in the model, and the
squares are additive [7]. Values of R2>0.7 suggest that
relationships are linear enough to use regressions to assess
sensitivities [29]. Thus, we assessed our regression models
with R2 using this benchmark. To protect against over-
fitting, we calculated the PRESS statistic (Predicted
REsidual Sums of Squares) and checked to ensure that it
decreased with the addition of each parameter to the model
[7]. Once a final model was fit, we averaged the SRCs for
models from all input distributions with R2>0.7 to derive
an estimate of the influence of each parameter on the
variance of each output metric.

To see how uncertainty is distributed spatially (objective
#3), we mapped standard error of predicted egg-to-fry
survival for Chinook salmon (O. tshawytscha) in each
stream reach. We chose this metric as an example because
the model that predicts egg-to-fry survival is simple and has
fewer parameters than other models. In calculating standard
errors, we used results from the 50% input distribution to be
sure to capture spatial patterns in case variance was low. We
investigated the relationship of standard error of egg-to-fry
survival with the predictor variable, percent fine sediment
deposited. Together, this relationship and the mapped
uncertainty should highlight areas where management
activities would be most effective.

2.3 Field Validation

We used instream habitat data from six streams (~1 km
each) surveyed throughout the Lewis River Basin in 2005
(this study) and ten streams surveyed in 2003 (J. Burke,
University of Washington, unpublished data) to estimate
how well predictions from ecological models matched
observed values. With the exception of substrate data from
2003 (see next paragraph), these data were not used to
develop the underlying models. The Lewis River is a
tributary to the Columbia River. The basin has high (nearly
200 cm) annual precipitation and drains 2,760 km2 of the
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Table 1 Definitions, nominal (i.e., initial) values, and units of the 71 parameters (of 119 total) to which predictions were found by regression
analysis to be most sensitive

Parameter Definition Nominal value Units

Riparian functions RF
RF3 Shade: bankfull width 30 m
RF4 Shade: total % cover threshold #1 80 %
RF5 Shade: total % cover threshold #2 50 %
RF7 Shade: total % cover threshold #4 40 %
RF8 Shade: total % cover threshold #5 30 %
RF15 Pool-forming conifer: stream gradient threshold #1 0.04 –
RF19 Pool-forming conifer: conifer tree size threshold #3 2 in
RF22 Large woody debris: total % cover threshold #1 30 %
RF23 Large woody debris: total % cover threshold #2 50 %
RF24 Large woody debris: % of trees that are coniferous #1 70 %
RF25 Large woody debris: % of trees that are coniferous #2 50 %
RF26 Large woody debris: % of trees that are coniferous #3 30 %
RF29 Large woody debris: conifer tree size threshold #1 20 in
RF30 Large woody debris: conifer tree size threshold #2 10 in
Sediment & water supply SW
SW1 Road: unpaved width 7.5 m
SW2 Road: paved width 15 m
SW3 Road: % sediment entering stream (poor riparian) 100 %
SW4 Road: % sediment entering stream (fair riparian, ash soil) 38 %
SW5 Road: % sediment entering stream (fair rip., paved roads) 45 %
SW6 Road: % sediment entering stream (fair rip., unpaved rds) 46 %
SW7 Road: distance to stream multiplier 2.47 m
SW9 Road: sediment yield (paved roads, non-ash soil) 0.64 kg/m2/yr
SW10 Road: sediment yield (unpaved roads, ash soil) 24.7 kg/m2/yr
SW11 Road: sediment yield (unpaved roads, non-ash soil) 5.8 kg/m2/yr
SW12 Mass wasting: sediment yield (upper East Fork) 0.0318 kg/m2/yr
SW14 Mass wasting: sediment yield (upper North Fork) 0.106 kg/m2/yr
SW15 Mass wasting: sediment yield (lower North Fork) 1.4337 kg/m2/yr
SW16 Mass wasting: road density threshold #1 0.0031062 m/m2

SW18 Mass wasting: % 20-yr forest 75 %
SW19 Mass wasting: % of area considered highly stable #1 10 %
SW20 Mass wasting: % of area considered highly stable #2 4 %
SW21 Mass wasting: % of area considered highly stable #3 2 %
SW23 Mass wasting: % of area considered moderately stable #1 20 %
SW25 Mass wasting: % of area considered of low stability #1 85 %
Instream habitat conditionsa HC
HC1 Hydro: increase in Q from timber harvest 0.08 %
HC2 Hydro: increase in Q from roads 0.2 %
HC3 Hydro: increase in Q in agriculture (grass cover type) 0.36 %
HC6 Hydro: road density threshold 0.0012 m/m2

HC7 Routing: hydro runoff coefficient a1 3 –
HC8 Routing: hydro runoff coefficient a2 0.93 –
HC9 Routing: fine-sediment coefficient a1 0.311034 –
HC10 Routing: fine-sediment coefficient b1 0.592983 –
HC11 Routing: fine-sediment coefficient a2 37.00906 –
HC12 Routing: fine-sediment coefficient b2 0.248506 –
HC13 Routing: fine-sediment coefficient a3 12.0335 –
HC14 Routing: fine-sediment coefficient b3 −0.69944 –
HC15 Routing: coarse sediment coefficient a1 110.5471 –
HC16 Routing: coarse sediment coefficient b 0.178887 –
HC17 Routing: coarse sediment coefficient a2 −0.23795 –
HC18 Routing: coarse sediment coefficient a3 −0.05387 –
Habitat suitability HS

HS2 Intrinsic potential: bankfull width threshold #2 10 m
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western slope of the Cascade Mountain range. Natural
disturbances have included forest fires and volcanic activity,
and anthropogenic influences have included timber harvest,
agriculture, residential development, and gravel mining [11].
Four species of federally listed anadromous salmonids are
found in the watershed: Chinook, coho (O. kisutch), and
chum salmon, and steelhead trout.

Stream habitat survey data included unit-specific (i.e.,
pool, riffle) measures of substrate composition (including
percent fine sediment deposited in stream beds), counts
of large woody debris, and percent of the stream shaded
by riparian vegetation; see [23] for survey methods.
Surveyed reaches were chosen to be broadly representa-
tive of conditions in the Lewis River Basin. Large woody
debris was both modeled and observed for all 16 stream
reaches. Observed substrate composition data from the
2003 surveys were used to parameterize the model
predicting percent fine sediment deposited in streams.
Therefore, we could only use substrate composition data
from the 2005 surveys for validation of this metric. Shade
was estimated in the field for the 2005 surveys only. For
Chelatchie Creek, we recorded observations of percent
fine-sediment deposition made by two independent
observers.

Modeled and observed data were not directly compara-
ble due to discrepancies in spatial resolution or in the way
that data were represented (e.g., modeled categorical levels
of good, fair, or poor versus numerical surveyed values).
Thus, we did not compute any formal statistics, but instead
compared results qualitatively. For large woody debris
recruitment and riparian shade, we report whether the field
observations fell within the range of model predictions. A
translation step was required to compare modeled scores to
observed values. For example, observed counts of large
woody debris in the bankfull channel could best be
compared to predictions by the riparian large woody debris
recruitment sub-model, and observations of percent shade
over streams due to riparian vegetation were compared to
predicted riparian shade scores. We assumed that a modeled
score of ‘poor’ (represented as a value of 1) indicates less
than or equal to two pieces of large wood per 100 m, a
score of ‘fair’ (value of 2) represented two to five pieces,
and a score of ‘good’ (value of 3) represented greater than
or equal to five pieces [21]. Similarly for shade, we
assumed that a score of ‘poor’ represented <20% shade
over the stream channel, a score of ‘fair’=20–50%, and a
score of ‘good’=>50% [31]. These assumptions resulted in
the following equations: (a) LWD score=0.884 ln(observed

Table 1 (continued)

Parameter Definition Nominal value Units

HS3 Intrinsic potential: stream gradient preference #1 0.01 –
HS4 Intrinsic potential: stream gradient preference #2 0.02 –
HS5 Intrinsic potential: stream gradient preference #3 0.03 –
HS8 Intrinsic potential: stream gradient preference #6 0.07 –
HS9 Intrinsic potential: stream gradient preference #7 0.12 –
HS10 Intrinsic potential: stream gradient preference #8 0.16 –
HS12 Modified physical function: fine-sediment score #1 5.9 (binned)
HS13 Modified physical function: fine-sediment score #2 13.3 (binned)
HS15 Modified physical function: bed scour score #2 0.0606 (binned)
HS16 Modified physical function: bed scour score #3 0.0835 (binned)
HS17 Modified physical function: bed scour score #4 0.1182 (binned)
Spawner capacity SC

SC2 Spawners per redd #2 2.33 # fish
SC5 Redds per km #2 36.4 redds/km
SC10 Redd area #2 15.25 m3

SC12 Percent of reach that is spawnable 0.06243 %
SC14 Stream gradient #2 0.04 –
SC15 Bankfull width #1 5 m
SC17 Bankfull width #3 25 m
Egg-to-fry survivalb SV
SV1 Chinook survival coefficient #1—regression intercept 0.236642 –
SV2 Chinook survival coefficient #2—regression slope 0.128547 –

Codes in black boxes are abbreviations for each model, and correspond with Fig. 1, which depicts model structures
a Coefficients for routing sediment are from the following equations: (1) % Fine sediment=a1PF

b 1 (1+a2VWIb 2 +a3QS
b 3 ), and (2) Coarse

fraction of sediment=a1 D
b (1+a2PF+a3VWI), where PF=percent of sediment <1 mm contributed from lateral hillslopes and from an upstream

zone of influence, VWI valley width index, QS stream power, and D characteristic grain size
bModels also predicted survival for steelhead trout and coho salmon but were not included
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LWD count)+1.0647, and (b) Shade score=0.8464 ln
(observed % shade)−0.8039. Observed data were summed
over the entire surveyed reach and compared to modeled
data for the same stretch (if N>1 modeled reaches, we used
a length-weighted average of modeled scores). To estimate
the range of modeled predictions, we calculated the
minimum and maximum predictions from the Monte Carlo
simulations when variance of input parameters was set to
30% (the midpoint of the five input distributions we tested)
for the same georeferenced stream reaches.

3 Results

3.1 Sensitivity Analysis

Certain model output metrics (e.g., 2.3-year flood dis-
charge, hydrologic runoff, riparian functions, and habitat
suitability) exhibited little variation, regardless of the
amount of uncertainty in parameters (Fig. 2). The coef-
ficients of variation for these metrics were linearly related
to input distribution ranges. Variances in other metrics,
most notably bed scour, were highly influenced by even
low levels of uncertainty in input distributions, and
relationships appeared to increase exponentially.

Average R2 values were greater than 0.75 for nearly all
output metrics analyzed with the regression analysis
(Table 2), suggesting that the models were largely additive
and that multiple linear regression was an appropriate
method of sensitivity analysis. The only model regressions
with an R2 less than 0.7 were bed scour using input
distribution ranges of 30%, 40% and 50% (R2=0.66, 0.52,
and 0.52, respectively). In seven out of the 13 output
metrics, R2 was at least 0.9 for all regressions. Of the initial
119 parameters, model output was sensitive to 71 (60%).
Parameters that had |SRC| >0.1 were limited to 52 (44%),

with only 11 (9%) having |SRC| >0.5. Sensitive metrics
were directly or indirectly influenced by fewer than half of
the parameters (Table 2). Predicted riparian conditions were
sensitive to 34% of parameters, sediment from surface
erosion to 17%, hydrologic runoff to 17%, sediment from
roads to 30%, sediment from mass wasting to 20%, percent
fine sediment deposited to 23%, bed scour to 8%, 2.3-year
flood discharge to 9%, habitat suitability (spring Chinook)
to 32%, spawner capacity to 41%, and egg-to-fry survival
to 21%.

Riparian function output was sensitive to parameters in
the shade and large woody debris sub-models, especially
those related to the amount of canopy cover (RF4, RF5)
and the percent of cover that was coniferous (RF24), but
not to parameters in the pool-forming conifer sub-model
(Table 2). Out of 35 step-function parameters in riparian
models, outputs were at least weakly sensitive to only seven
parameters (20%). Surface erosion (both sediment and
hydrologic runoff) were sensitive to riparian parameters
describing total canopy cover (RF5, RF22) and the
proportion of cover that was coniferous (RF25). Note again
that we did not test parameters internal to the WEPP model,
which predicted inputs for surface erosion and runoff. The
amount of sediment coming from roads was most sensitive
to width of unpaved roads (SW1), sediment yield coming
from unpaved roads (SW11), distance of roads from
streams (SW7), and the degree to which riparian conditions
could reduce sediment from unpaved roads (SW6). The
amount of sediment contributed by mass wasting was most
sensitive to parameters relating to sediment yield expected
from the upper North Fork (SW14), the amount of hillslope
area in various stages of stability (SW19, SW23, SW25), as
well as road density (SW16). The 2.3-year flood discharge
was most sensitive to parameters related to road density
(HC2, HC6). Fine-sediment deposition predictions were
sensitive to the fine sediment coefficients b3 (HC14) and a1
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Fig. 2 Coefficients of variation
for each model output metric
across the five ranges of input
distributions (i.e., uncertainty in
parameters)

Salmon recovery forecasts—a watershed-scale sensitivity analysis 19 Author's personal copy 



(HC9; coefficients obtained from regression to a calibration
data set), and bed scour was most sensitive to coarse
sediment coefficients a3 (HC18) and a1 (HC15; Table 2).

Habitat suitability predictions were sensitive to a similar
set of parameters for each species evaluated (Table 2).
These results were more dependent on parameters that
predicted how sediment was routed (effects of bed scour

were largest; HC15 and HC18) than on step-function
parameters related to bankfull width, stream gradient, or
riparian functions. Chinook salmon spawner capacity was
most sensitive to local fish population characteristics (e.g.,
spawners per redd (SC2), redd area (SC10), and percent
spawnable (SC12)). These were more sensitive than stream
gradient or bankfull width, and riparian seral stage had no

Table 2 Results of multiple regressions indicating parameters to which predicted output metrics were sensitive (|SRC|>0.1)

Output metric R2 Totala no.
sensit. params.

Highly sensitive
(|SRC| >0.5)

Moderately sensitive
(|SRC| 0.3–0.5)

Weakly sensitive
(|SRC| 0.1–0.3)

Riparian 0.897 12 of 35 (35) RF4 (−0.611) RF24 (0.455) RF29 (−0.240)
RF5 (−0.348) RF30 (−0.219)

RF26 (0.155)
RF8 (−0.119)

Sediment from surface
erosion

0.839 6 of 35 (0b) RF5 (0.543) RF25 (0.452) RF26 (−0.331)
RF22 (0.423)

Hydrologic runoff 0.850 6 of 35 (0b) RF5 (0.556) RF22 (0.456) RF26 (−0.286)
RF25 (0.389) RF8 (0.218)

RF24 (−0.129)
Sediment from roads 0.972 14 of 46 (11) SW1 (0.632) SW11 (0.475) SW3 (0.183)

SW7 (0.365) SW10 (0.151)
SW6 (0.352) SW4 (0.130)

Sediment from mass wasting 0.850 10 of 50 (15) SW14 (0.408) SW15 (0.232)
SW23 (−0.377) SW12 (0.228)
SW19 (−0.366) SW18 (0.217)
SW16 (−0.326) SW20 (−0.151)
SW25 (0.304)

2.3-year flood discharge 0.997 6 of 69 (8) HC2 (0.913) HC6 (−0.302) HC1 (0.139)
HC8 (0.135)
HC7 (0.107)
HC3 (0.102)

% Fines 0.986 17 of 75 (14) HC14 (−0.650)
HC9 (0.538)

HC13 (0.290)
HC10 (−0.288)
HC11 (0.239)
HC12 (0.130)

Bed scour 0.759 6 of 79 (18) HC18 (−0.618) HC15 (−0.478) HC17 (−0.238)
HC16 (0.174)

Habitat suitability for
steelhead, Chinook,
and chum

0.964 28 31 30 of 96 (17) HC15 (0.714,
0.713, 0.705)

HC18 (0.408, 0.408, 0.432) HS16 (0.209, 0.200, 0.190)
0.963 HC9 (−0.197, −0.193, −0.184)
0.967 HC10 (0.158, 0.156, 0.138)

HC16 (−0.138, −0.141, −0.146)
HS13 (0.140, 0.142, 0.129)
HS15 (0.133, 0.148, 0.171)
HC17 (0.115, 0.115, 0.115)
HC11 (−0.120, −0.117, −0.113)
HS2 (−0.107, n/a, n/a)

Chinook spawner capacity 0.955 7 of 17 (17) SC2 (0.606) SC10
(−0.514)

SC12 (0.496) SC15 (−0.187)
SC14 (0.165
SC5 (0.105)

Chinook egg-to-fry survival 0.985 16 of 77 (2) SV2 (−0.534) HC9
(−0.533)

HC10 (0.410) HC14 (0.285)
HC11 (−0.317) HC13 (−0.207)

HC12 (−0.123)

SRC Standardized regression coefficients. See Table 1 for parameter definitions.
a Number of parameters to which results were sensitive (i.e., |SRC|>0), out of the total number of parameters capable of influencing each metric
(both directly and indirectly through other models); the number of parameters capable of directly influencing each metric is in parentheses.
b Does not include WEPP model parameters (see text); influenced indirectly by riparian parameters.
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influence. Chinook salmon egg-to-fry survival was sensi-
tive to the slope of the relationship between survival and
fine sediment (SV2) as well as indirectly to fine-sediment
deposition parameters (HC9, HC10, and HC11) in the
habitat conditions model.

When examined reach-to-reach, we found that prediction
certainty varied spatially for Chinook salmon egg-to-fry
survival (Fig. 3a,b). Uncertainty was highest when fine-
sediment deposition was approximately 10 to 20%
(Fig. 3c). When sediment was higher than this range,
survival dropped quickly and when sediment was <10%
fines, survival was predicted to be high. Within the 10–20%
range, spatial variance was highest because this is where
the predictive relationship exhibited a threshold effect.
Thus, spatial differences in landscape characteristics that
influenced sediment deposition in the 10–20% range
correlate to spatial uncertainty for this metric. Predictions
were less variable in the lower basin, where low-gradient
channels are surrounded by altered landscapes (e.g., urban,
rural residential, and agriculture) and sediment inputs are
higher than in high-gradient channels with vegetated land-
scapes in the upper basin (Fig. 3a). We found no relation-
ships between prediction standard error in sub-basins and
sub-basin area, stream length, or stream density.

3.2 Field Validation

Fine-sediment deposition values were within predicted
ranges for all six reaches for which we had data. Four of
the six streams for which we visually estimated shade had
values within the range predicted by models. Observed
counts of large woody debris were within modeled ranges
for half (8 of 16) of the stream reaches (Table 3).

Observations of percent fine-sediment deposition in
Chelatchie Creek made by two observers differed for some
habitat types (scour pools, plunge pools, and riffles), but
were similar for others (glides and dam pools). Average
differences between observer estimates ranged from 4%
(glides) to 30% (plunge pools); only eight of 34 individual
habitat unit estimates differed by more than 25%. Differ-
ences between observer estimates did not appear to be
related to type of habitat unit.

4 Discussion

4.1 Insights from Sensitivity Analyses

Multiple approaches exist for evaluating sensitivity of
predictions to uncertainty in model components. The most
thorough approach is a variance-based global sensitivity
analysis [27, 32], which partitions variation into that caused
by main effects and that caused by interactions. This type of

analysis can be unwieldy if models are very complex.
However, if a model is expected to be linear, a regression
analysis provides a quantitative sensitivity analysis where
regression coefficients indicate the effect of varying that
particular parameter away from the nominal value by a
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Fig. 3 Spatial distribution of uncertainty (standard error, SE,
represented by line thickness) in predictions for Chinook salmon
egg-to-fry survival, shown (a) throughout all reaches in the Lewis
River Basin accessible to anadromous fish and (b) as a close-up in the
lower watershed. The graph (c) depicts standard error of egg-to-fry
survival predictions in relation to the primary predictor, percent of
stream beds covered in fine sediment
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fixed fraction of its variance [2]. The models we evaluated
were highly linear, as evidenced by R2 values close to unity
for several metrics, and all mean R2 values>0.75. In fact,
the top three most sensitive parameters found by regression
analysis agreed well with preliminary analyses using other
sensitivity analysis approaches (A. Fullerton, unpublished
data). We found that R2 values declined with increasing
parameter uncertainty. For most of these, the decrease in R2

was not substantial and the SRCs were fairly constant. In
others, particularly bed scour, the decrease in R2 was
substantial (to a low of 0.52 at 50% parameter uncertainty)
and some changes in SRCs were observed when uncertain-
ty increased. This suggests that there were either some
interactions or nonlinearities occurring at higher levels of
uncertainty which cannot be investigated using regression
methods.

A limitation of our approach is that we used uniform
distributions for parameter uncertainty because we lacked
information on true parameter distributions. It is likely that
some parameters are more uncertain than others. Several
ways in which uncertainty estimates could be improved
include (1) convening a panel of experts, (2) collecting more
empirical data in the basin, (3) fitting parameters from
statistical correlations in similar basins, or (4) conducting
uncertainty analysis on cross-combinations of uncertainty
levels using best-available distributions (e.g., hold uncertain-
ty at 10% for one parameter and vary the others across all

levels of 10%, 20%, 30%, and 50%). Despite this limitation,
we feel that our approach provided a general assessment of
the effect of uncertainty on modeled predictions.

Understanding how certain we are about parameters is
clearly important for interpreting predictions. Our analysis
indicated that less than half of the parameters in the six
models we evaluated contributed to uncertainty in predic-
tions in the Lewis River Basin. Six parameters to which
model output was most sensitive (|SRC|>0.5) affected
multiple output metrics. Three were parameters describing
riparian canopy thresholds—percent cover (RF22 and RF5)
and percent coniferous (RF25)—and three were coefficients
in the Habitat Conditions model—a multiplier of incoming
fine sediment (HC9), and multipliers of sediment grain size
(HC15) and valley width index (HC18). Assessing accura-
cy of these parameter values could be a relatively
inexpensive way to improve model performance.

It is tempting to identify sensitive parameters as the most
important or most influential, but it is essential that model
users distinguish between parameters to which outputs were
sensitive and parameters that are ecologically important. A
parameter insensitive to uncertainty may be a very
important part of our mechanistic understanding of ecosys-
tem processes and their contribution to population viability
(see, e.g., [38]). If we have reasonable evidence that a
relationship exists in nature but do not see sensitivity of
results to parameters in that relationship, we should

Table 3 Comparison of instream habitat conditions assessed from field surveys and models

Stream Year Length (km) LWDa Shade % Fines

Obs. Pred. Obs. Pred. Obs. Pred.

Chelatchie Creek 2005 1.17 1.1 2–3 1.7 1.3–2.5 27b 15–58
Lockwood Creek 2005 0.73 1.3 1–2.8 2.5 2–3 29 9–30
Muddy River 2005 0.39 1.2 1–1.7 1.6 1–1.7 12 7–23
Rock Creek (EF) 2005 0.86 0.9 1–2 2.4 1–2 17 10–34
upper Siouxon Creek 2005 0.90 1.8 2.2–3 2.8 2–3 6 2–11
Smith Creek 2005 0.20 1.8 1–2 0.1 1–2 14 7–22
Clear Creek 2003 1.12 3 2–3 – –
Copper Creek 2003 1.95 1.6 1.8–2.5 – –
EF Lewis River 2003 0.87 0.1 1–3 – –
Johnson Creek 2003 1.49 2.1 1–3 – –
Mason Creek 2003 1.20 0.1 1–3 – –
Miller Creek 2003 0.60 2.6 1.4–2.8 – –
NF Lewis River 2003 0.358 0.9 3 – –
Pine Creek 2003 2.13 1.6 1–3 – –
Rock Creek (NF) 2003 1.42 0.1 1.8–2.9 – –
lower Siouxon Creek 2003 0.91 1.2 2–3 – –

LWD Counts of large woody debris per 100 m, Shade percent shade over stream due to riparian canopy cover, and %Fines percent fine sediment
(<1 mm) in the substrate. For comparison, large woody debris counts and riparian shade percentages observed in survey data were represented as
scores predicted by models. Ranges for predictions were based on Monte Carlo runs where variance in parameter distributions was set to 30%.
Shade was not assessed in 2003, and fine-sediment data from 2003 were used to parameterize models and therefore could not be used to assess
model accuracy.
a Observations were counts in stream channels whereas predictions were for recruitment rates
b Represents the average of two observers
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reconsider whether the model was developed to adequately
represent the relationship. For example, sensitivity analysis
of the Ecosystem Diagnosis and Treatment (EDT) model
[16, 37] found little sensitivity of predictions to habitat
parameters, yet biologists firmly believe that habitat
features such as flow contribute significantly to salmon
population performance. As a direct response to their
sensitivity analysis results, the Bureau of Reclamation
developed support models for EDT in the Yakima River
Basin to provide increased precision to modeled stream
attributes most influenced by changes in flow [37]. Barring
this possibility for the models we evaluated in the Lewis
River Basin, parameters with |SRC| <0.1 (i.e., those not
listed in Table 2) could reasonably be either removed from
models or set to static values, since predictions were not
sensitive to their values. This would reduce model
complexity considerably, yet it is unclear whether predic-
tions would be sensitive to these parameters under other
conditions where values of input data may be beyond the
range we tested.

The influence of a parameter is related to the spatial
extent and accuracy of input data estimates (see Fig. 1 for
input data used by each model). We did not assess this
source of uncertainty, but it should be evaluated before
these models are used in other watersheds for two reasons.
First, predictions may be sensitive to uncertainty in input
data. For example, the remotely sensed data that were used
to model vegetation in the Lewis River watershed classified
riparian areas as largely coniferous in the upper watershed.
It is likely that at a higher resolution we would find riparian
areas dominated with deciduous or mixed forests. If
vegetation was classified this way, models would rate such
areas lower quality for riparian functions. Second, because
model input data may differ substantially in other water-
sheds, predictions may be sensitive to different parameters
in another area. For example, in the Lewis River watershed,
sediment entering streams from roads was much greater in
magnitude than sediment coming from mass wasting or
surface erosion; thus, parameters describing the contribu-
tion from roads would be expected to be more sensitive to
uncertainty than those from other sources of erosion. But in
another basin where sediment is contributed more by
natural processes than by roads, the sensitivity of param-
eters relating to roads may be reduced. For these reasons,
models should be adapted to the extent possible and tested
under appropriate local conditions before being simplified.

Our analyses have identified ways to improve these
models in the Lewis River Basin, but have also elucidated
several insights for future model development in general.
First, characterization of sensitivity of predictions to
different types of uncertainty should be incorporated in
model construction from the start. By identifying how to
reduce model complexity and improve precision and

accuracy, a more robust model can be developed in the
next iteration. Second, estimates of uncertainty and
expected variability should be included as standard model
outputs (e.g., as prediction intervals). Consideration of
which measures of uncertainty will best aid interpretation
and use of model results can influence model design. For
example, it may be equally important for decision-makers
to understand how model results represent natural variabil-
ity in addition to prediction uncertainty contributed by other
factors.

4.2 Spatial Distribution of Uncertainty

In the Lewis River Basin, variance in predictions was
unevenly distributed spatially, with less sensitivity in the
lower part of the river basin. This might simply reflect the
magnitude of predicted values; i.e., we would expect lower
variance in predictions if the value being predicted is low.
For example, egg-to-fry survival for Chinook salmon was
predicted to be poor in the lower watershed in lower
gradient areas where sediment scoured from higher gra-
dients is deposited, and where concentrated roads contrib-
ute high levels of sediment; we would expect these
predictions to be more certain than those in areas where
survival is expected to be high (e.g., where sediment levels
are below or near critical survival thresholds). Alternatively,
we would expect predictions in less disturbed areas to have
higher variance due to higher levels of landscape complex-
ity and habitat heterogeneity (or possibly due to paucity of
data in this part of the range). This result again emphasizes
that the range of input data affects the sensitivity of
predictions. Identifying spatial uncertainty allows targeting
data collection in areas that will improve model precision.
In the Lewis River Basin, this means collection of more
data in areas where fine-sediment deposition is predicted to
be 10–20%.

Such spatial effects can alter the usefulness of modeled
data, depending on the spatial scale at which predictions are
being used. For example, if the resolution of interest is
individual stream reaches (1–10 km), uncertainty in
modeled predictions may be too large to make predictions
useful for making decisions (e.g., in locating individual
restoration projects). However, if predictions are made over
a range of 10–100 km, predictions can elucidate influential
regional trends that may affect project performance, and at
the scale of >100 km (i.e., at the watershed or subwatershed
level), spatial uncertainty may be less important.

4.3 Field Validation

We found reasonable agreement between observed and
modeled data for the few streams for which we had
empirical data. Several factors limited our ability to do a
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more rigorous validation. The most serious problem was
that we had very small sample sizes of stream survey data
(N=6 to 16). Other than this small dataset, basin-specific
data do not exist at an appropriate spatial resolution for
most instream habitat characteristics that were modeled
(e.g., bed scour, riparian functions, substrate composition,
large woody debris, and flow). Lack of empirical data on
instream habitat characteristics is a common problem.
Busack and Thompson [1] evaluated the quality of data
for ten Puget Sound (Washington, USA) watersheds that
were used as inputs to the Ecosystem Diagnosis and
Treatment model (EDT; [12, 18]). Categories of data
quality ranged from empirical to purely hypothetical or
expert opinion. They found that for most data types
evaluated, only one-quarter or less of model inputs were
based on empirical data. When the EDT model was applied
in the Lewis River Basin, about two-thirds of these
characteristics were estimated by experts or derived from
theory [3]. The paucity of empirical data is precisely why
models are often used to make management decisions, and
is also why testing models is essential.

In many cases, even when data are available, there is a
spatial disconnect between the resolution of empirical data
and predictions, or a difference in the way data are
represented. Field observations may be collected over
hundreds of meters or only at point locations whereas
modeled predictions may be for thousands of meters. A
problem we encountered was that we were unable to
directly compare modeled and observed data due to a
difference in metrics. For example, field observations of
large woody debris consisted of counts of wood in stream
channels whereas predictions were for relative recruitment
rates from riparian areas. Although these metrics are
related, wood in channels can include old pieces that
predate the current stand (e.g., [9]), pieces carried to the
channel by mass wasting from outside the riparian zone
(e.g., [26]), and fluvial transport from upstream (e.g., [14]),
all of which can confound correlations between current
riparian stand type and instream wood counts and compli-
cate efforts to quantify uncertainty. And finally, empirical
data are subject to generally unquantified measurement
error and observer bias [33], as we found when two
biologists independently estimated percent fine sediment
in Chelatchie Creek.

Users cannot assess model results if predictions cannot
be compared to observations due to lack of empirical data
or differences in currency or spatial resolution. These points
compel us to suggest that models be built with components
that can be validated. Early in model design, as the
quantities to be predicted are decided on, it is important
to consider how these predictions can be tested, given the
format of available or easily obtainable data. It is often not
possible to completely validate model results; after all, one

goal of such models is to estimate quantities that cannot be
measured (e.g., future population levels), but our ability to
assess and interpret model results will be improved if we
include components whose predictions can be compared to
observations. Additionally, modelers should demand that
collection of field data used to parameterize models include
quantification of observer error, measurement error, and
natural variability. By partitioning error to its various
components, users can better identify how model precision
can be improved such as by increasing sample size or
implementing observer training.

4.4 Management Implications of Uncertainty

An understanding of uncertainty in modeled data (i.e., the
potential magnitude of model errors) can be used to
improve management decisions in several ways. First,
when models include estimates of input errors (e.g., using
Monte Carlo simulations), the resulting distribution of
predictions can provide more robust information about the
likelihood of a particular outcome [35]. Restoration
decisions are classically based on analyses that compare
point estimates of means (e.g., a particular set of reaches
having 3.2 times less fine sediment than another set of
reaches). If managers instead used the entire distribution of
predictions, they would be able to estimate the likelihood
of exceeding a critical threshold. For example, it might be
more useful to say that given estimated uncertainty in the
model, there is a 63% chance of exceeding 10% fine-
sediment deposition, a value above which egg-to-fry
survival declines rapidly. In the Lewis River Basin, our
analyses can suggest which management approaches are
“sure bets” and which have too much uncertainty associated
with them to be useful. We are more certain that
management strategies that focus on reducing sediment
input to improve egg-to-fry survival will be successful than
we are of strategies that focus on improving bed scour
conditions because of greater variability in predictions for
the latter. This insight would not have been possible
without sensitivity analyses; management decisions would
have had to be made using only point estimates.

Second, by using multiple models to make predictions
and assessing a variety of output metrics, managers will
rely less on any one model and the accuracy of its inputs.
Rather, decisions can be made based on what the majority
of models (or metrics) suggest. When decisions are based
on multiple models, it is not necessary to have a model that
is complex enough to be biologically realistic. For example,
we found that predictions from many of the models using
step functions were fairly insensitive to the choices of
thresholds between steps. If these models were instead
mathematical equations, we may have found additional
parameters to which outputs were sensitive. However, this
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simple solution provided predictions that were relatively
robust to the choice of the exact step, and in combination
with other metrics can increase decision accountability.
Also, by including models that predict multiple response
metrics, managers can further boost their confidence
because we are often more certain about some relationships
than others. Compare, for example, the level of uncertainty
associated with egg-to-fry survival and spawner capacity
with the lower uncertainty in many of the habitat metrics in
Fig. 2. Predictions about habitat conditions are based on
fundamental relationships that are well understood whereas
predictions about fish populations are based on estimates
that are often quite uncertain, and are often based on a
larger number of inputs.

A final way to acknowledge model uncertainty is to
predict a variety of alternate future scenarios, since the
exact future is unknowable [24]. Due to the paucity of
empirical data, models are an inevitable part of the
decision-making process. The issue that remains is not
whether or not to use models, but how to incorporate
uncertainty into predictions. Ultimately, the utility of using
models like the ones analyzed here to help make manage-
ment decisions will depend on the willingness of managers
to acknowledge data and model limitations [6, 30] and to
embrace uncertainty information (e.g., by asking that
predicted restoration action responses be stated as proba-
bilities of success). Uncertainty in modeled predictions, if
communicated clearly (i.e., framed as probabilities), should
not be a reason for stalling on important decisions [8, 13].
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